References
Abdelaal, T., L. Michielsen, D. Cats, D. Hoogduin, H. Mei, M. J. T. Reinders, and A. Mahfouz. 2019. “A Comparison of Automatic Cell Identification Methods for Single-Cell RNA Sequencing Data.” Journal Article. Genome Biol 20 (1): 194. https://doi.org/10.1186/s13059-019-1795-z.
Aibar, S., C. B. Gonzalez-Blas, T. Moerman, V. A. Huynh-Thu, H. Imrichova, G. Hulselmans, F. Rambow, et al. 2017. “SCENIC: Single-Cell Regulatory Network Inference and Clustering.” Journal Article. Nat Methods 14 (11): 1083–86. https://doi.org/10.1038/nmeth.4463.
Alavi, A., M. Ruffalo, A. Parvangada, Z. Huang, and Z. Bar-Joseph. 2018. “A Web Server for Comparative Analysis of Single-Cell RNA-Seq Data.” Journal Article. Nat Commun 9 (1): 4768. https://doi.org/10.1038/s41467-018-07165-2.
Amodio, M., D. van Dijk, K. Srinivasan, W. S. Chen, H. Mohsen, K. R. Moon, A. Campbell, et al. 2019. “Exploring Single-Cell Data with Deep Multitasking Neural Networks.” Journal Article. Nat Methods 16 (11): 1139–45. https://doi.org/10.1038/s41592-019-0576-7.
Aran, D., Z. Hu, and A. J. Butte. 2017. “xCell: Digitally Portraying the Tissue Cellular Heterogeneity Landscape.” Journal Article. Genome Biol 18 (1): 220. https://doi.org/10.1186/s13059-017-1349-1.
Arisdakessian, C., O. Poirion, B. Yunits, X. Zhu, and L. X. Garmire. 2019. “DeepImpute: An Accurate, Fast, and Scalable Deep Neural Network Method to Impute Single-Cell RNA-Seq Data.” Journal Article. Genome Biol 20 (1): 211. https://doi.org/10.1186/s13059-019-1837-6.
Azizi, E., A. J. Carr, G. Plitas, A. E. Cornish, C. Konopacki, S. Prabhakaran, J. Nainys, et al. 2018. “Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment.” Journal Article. Cell 174 (5): 1293–1308 e36. https://doi.org/10.1016/j.cell.2018.05.060.
Badsha, M. B., R. Li, B. Liu, Y. I. Li, M. Xian, N. E. Banovich, and A. Q. Fu. 2020. “Imputation of Single-Cell Gene Expression with an Autoencoder Neural Network.” Journal Article. Quant Biol 8 (1): 78–94. https://doi.org/10.1007/s40484-019-0192-7.
Baron, M., A. Veres, S. L. Wolock, A. L. Faust, R. Gaujoux, A. Vetere, J. H. Ryu, et al. 2016. “A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-Cell Population Structure.” Journal Article. Cell Syst 3 (4): 346–360 e4. https://doi.org/10.1016/j.cels.2016.08.011.
Becht, E., N. A. Giraldo, L. Lacroix, B. Buttard, N. Elarouci, F. Petitprez, J. Selves, et al. 2016. “Estimating the Population Abundance of Tissue-Infiltrating Immune and Stromal Cell Populations Using Gene Expression.” Journal Article. Genome Biol 17 (1): 218. https://doi.org/10.1186/s13059-016-1070-5.
Becht, E., L. McInnes, J. Healy, C. A. Dutertre, I. W. H. Kwok, L. G. Ng, F. Ginhoux, and E. W. Newell. 2018. “Dimensionality Reduction for Visualizing Single-Cell Data Using UMAP.” Journal Article. Nat Biotechnol. https://doi.org/10.1038/nbt.4314.
Bernstein, N. J., N. L. Fong, I. Lam, M. A. Roy, D. G. Hendrickson, and D. R. Kelley. 2020. “Solo: Doublet Identification in Single-Cell RNA-Seq via Semi-Supervised Deep Learning.” Journal Article. Cell Syst 11 (1): 95–101 e5. https://doi.org/10.1016/j.cels.2020.05.010.
Berthelot, Schumm, D., and L. Metz. 2017. “BEGAN: Boundary Equilibrium Generative Adversarial Networks.” Journal Article. arXiv.
Biase, F. H., X. Cao, and S. Zhong. 2014. “Cell Fate Inclination Within 2-Cell and 4-Cell Mouse Embryos Revealed by Single-Cell RNA Sequencing.” Journal Article. Genome Res 24 (11): 1787–96. https://doi.org/10.1101/gr.177725.114.
Borgwardt, K. M., A. Gretton, M. J. Rasch, H. P. Kriegel, B. Scholkopf, and A. J. Smola. 2006. “Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy.” Journal Article. Bioinformatics 22 (14): e49–57. https://doi.org/10.1093/bioinformatics/btl242.
Bost, P., A. Giladi, Y. Liu, Y. Bendjelal, G. Xu, E. David, R. Blecher-Gonen, et al. 2020. “Host-Viral Infection Maps Reveal Signatures of Severe COVID-19 Patients.” Journal Article. Cell 181 (7): 1475–1488 e12. https://doi.org/10.1016/j.cell.2020.05.006.
Buettner, F., K. N. Natarajan, F. P. Casale, V. Proserpio, A. Scialdone, F. J. Theis, S. A. Teichmann, J. C. Marioni, and O. Stegle. 2015. “Computational Analysis of Cell-to-Cell Heterogeneity in Single-Cell RNA-Sequencing Data Reveals Hidden Subpopulations of Cells.” Journal Article. Nat Biotechnol 33 (2): 155–60. https://doi.org/10.1038/nbt.3102.
Butler, A., P. Hoffman, P. Smibert, E. Papalexi, and R. Satija. 2018. “Integrating Single-Cell Transcriptomic Data Across Different Conditions, Technologies, and Species.” Journal Article. Nat Biotechnol 36 (5): 411–20. https://doi.org/10.1038/nbt.4096.
Buttner, M., Z. Miao, F. A. Wolf, S. A. Teichmann, and F. J. Theis. 2019. “A Test Metric for Assessing Single-Cell RNA-Seq Batch Correction.” Journal Article. Nat Methods 16 (1): 43–49. https://doi.org/10.1038/s41592-018-0254-1.
Camp, J. G., K. Sekine, T. Gerber, H. Loeffler-Wirth, H. Binder, M. Gac, S. Kanton, et al. 2017. “Multilineage Communication Regulates Human Liver Bud Development from Pluripotency.” Journal Article. Nature 546 (7659): 533–38. https://doi.org/10.1038/nature22796.
Cao, J., M. Spielmann, X. Qiu, X. Huang, D. M. Ibrahim, A. J. Hill, F. Zhang, et al. 2019. “The Single-Cell Transcriptional Landscape of Mammalian Organogenesis.” Journal Article. Nature 566 (7745): 496–502. https://doi.org/10.1038/s41586-019-0969-x.
Chen, G., B. Ning, and T. Shi. 2019. “Single-Cell RNA-Seq Technologies and Related Computational Data Analysis.” Journal Article. Front Genet 10: 317. https://doi.org/10.3389/fgene.2019.00317.
Chu, L. F., N. Leng, J. Zhang, Z. Hou, D. Mamott, D. T. Vereide, J. Choi, C. Kendziorski, R. Stewart, and J. A. Thomson. 2016. “Single-Cell RNA-Seq Reveals Novel Regulators of Human Embryonic Stem Cell Differentiation to Definitive Endoderm.” Journal Article. Genome Biol 17 (1): 173. https://doi.org/10.1186/s13059-016-1033-x.
Chung, W., H. H. Eum, H. O. Lee, K. M. Lee, H. B. Lee, K. T. Kim, H. S. Ryu, et al. 2017. “Single-Cell RNA-Seq Enables Comprehensive Tumour and Immune Cell Profiling in Primary Breast Cancer.” Journal Article. Nat Commun 8: 15081. https://doi.org/10.1038/ncomms15081.
Cover, Thomas M. 1999. Elements of Information Theory. Book. John Wiley & Sons.
Crow, M., A. Paul, S. Ballouz, Z. J. Huang, and J. Gillis. 2018. “Characterizing the Replicability of Cell Types Defined by Single Cell RNA-Sequencing Data Using MetaNeighbor.” Journal Article. Nat Commun 9 (1): 884. https://doi.org/10.1038/s41467-018-03282-0.
Darmanis, S., S. A. Sloan, Y. Zhang, M. Enge, C. Caneda, L. M. Shuer, M. G. Hayden Gephart, B. A. Barres, and S. R. Quake. 2015. “A Survey of Human Brain Transcriptome Diversity at the Single Cell Level.” Journal Article. Proc Natl Acad Sci U S A 112 (23): 7285–90. https://doi.org/10.1073/pnas.1507125112.
Deng, Y., F. Bao, Q. Dai, L. F. Wu, and S. J. Altschuler. 2019. “Scalable Analysis of Cell-Type Composition from Single-Cell Transcriptomics Using Deep Recurrent Learning.” Journal Article. Nat Methods 16 (4): 311–14. https://doi.org/10.1038/s41592-019-0353-7.
Dijk, D. van, R. Sharma, J. Nainys, K. Yim, P. Kathail, A. J. Carr, C. Burdziak, et al. 2018. “Recovering Gene Interactions from Single-Cell Data Using Data Diffusion.” Journal Article. Cell 174 (3): 716–729 e27. https://doi.org/10.1016/j.cell.2018.05.061.
Ding, J., A. Condon, and S. P. Shah. 2018. “Interpretable Dimensionality Reduction of Single Cell Transcriptome Data with Deep Generative Models.” Journal Article. Nat Commun 9 (1): 2002. https://doi.org/10.1038/s41467-018-04368-5.
Dong, Z., and G. Alterovitz. 2021. “netAE: Semi-Supervised Dimensionality Reduction of Single-Cell RNA Sequencing to Facilitate Cell Labeling.” Journal Article. Bioinformatics 37 (1): 43–49. https://doi.org/10.1093/bioinformatics/btaa669.
Duvenaud, et al., D. 2015. “Advances in Neural Information Processing Systems 28.” Journal Article, 2224–32.
Eisenstein, M. 2020. “Single-Cell RNA-Seq Analysis Software Providers Scramble to Offer Solutions.” Journal Article. Nat Biotechnol 38 (3): 254–57. https://doi.org/10.1038/s41587-020-0449-8.
Eraslan, G., L. M. Simon, M. Mircea, N. S. Mueller, and F. J. Theis. 2019. “Single-Cell RNA-Seq Denoising Using a Deep Count Autoencoder.” Journal Article. Nat Commun 10 (1): 390. https://doi.org/10.1038/s41467-018-07931-2.
Fabregat, A., S. Jupe, L. Matthews, K. Sidiropoulos, M. Gillespie, P. Garapati, R. Haw, et al. 2018. “The Reactome Pathway Knowledgebase.” Journal Article. Nucleic Acids Res 46 (D1): D649–55. https://doi.org/10.1093/nar/gkx1132.
Finak, G., A. McDavid, M. Yajima, J. Deng, V. Gersuk, A. K. Shalek, C. K. Slichter, et al. 2015. “MAST: A Flexible Statistical Framework for Assessing Transcriptional Changes and Characterizing Heterogeneity in Single-Cell RNA Sequencing Data.” Journal Article. Genome Biol 16: 278. https://doi.org/10.1186/s13059-015-0844-5.
Fowlkes, E. B., and C. L. Mallows. 1983. “A Method for Comparing Two Hierarchical Clusterings.” Journal Article. Journal of the American Statistical Association 78 (383): 553–69.
Ge, S., H. Wang, A. Alavi, E. Xing, and Z. Bar-Joseph. 2021. “Supervised Adversarial Alignment of Single-Cell RNA-Seq Data.” Journal Article. J Comput Biol 28 (5): 501–13. https://doi.org/10.1089/cmb.2020.0439.
Goolam, M., A. Scialdone, S. J. L. Graham, I. C. Macaulay, A. Jedrusik, A. Hupalowska, T. Voet, J. C. Marioni, and M. Zernicka-Goetz. 2016. “Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 4-Cell Mouse Embryos.” Journal Article. Cell 165 (1): 61–74. https://doi.org/10.1016/j.cell.2016.01.047.
Gronbech, C. H., M. F. Vording, P. N. Timshel, C. K. Sonderby, T. H. Pers, and O. Winther. 2020. “scVAE: Variational Auto-Encoders for Single-Cell Gene Expression Data.” Journal Article. Bioinformatics 36 (16): 4415–22. https://doi.org/10.1093/bioinformatics/btaa293.
Guo, Gao, X., and J. Yin. 2017. “Improved Deep Embedded Clustering with Local Structure Preservation.” Journal Article. Proc. 26th International Joint Conference on Artificial Integlligence, 1753–59.
Haber, A. L., M. Biton, N. Rogel, R. H. Herbst, K. Shekhar, C. Smillie, G. Burgin, et al. 2017. “A Single-Cell Survey of the Small Intestinal Epithelium.” Journal Article. Nature 551 (7680): 333–39. https://doi.org/10.1038/nature24489.
Hadsell, Raia, Sumit Chopra, and Yann LeCun. n.d. “Dimensionality Reduction by Learning an Invariant Mapping.” Conference Proceedings. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06), 2:1735–42. IEEE.
Hafemeister, C., and R. Satija. 2019. “Normalization and Variance Stabilization of Single-Cell RNA-Seq Data Using Regularized Negative Binomial Regression.” Journal Article. Genome Biol 20 (1): 296. https://doi.org/10.1186/s13059-019-1874-1.
Hagai, T., X. Chen, R. J. Miragaia, R. Rostom, T. Gomes, N. Kunowska, J. Henriksson, et al. 2018. “Gene Expression Variability Across Cells and Species Shapes Innate Immunity.” Journal Article. Nature 563 (7730): 197–202. https://doi.org/10.1038/s41586-018-0657-2.
Haghverdi, L., A. T. L. Lun, M. D. Morgan, and J. C. Marioni. 2018. “Batch Effects in Single-Cell RNA-Sequencing Data Are Corrected by Matching Mutual Nearest Neighbors.” Journal Article. Nat Biotechnol 36 (5): 421–27. https://doi.org/10.1038/nbt.4091.
Han, X., R. Wang, Y. Zhou, L. Fei, H. Sun, S. Lai, A. Saadatpour, et al. 2018. “Mapping the Mouse Cell Atlas by Microwell-Seq.” Journal Article. Cell 172 (5): 1091–1107 e17. https://doi.org/10.1016/j.cell.2018.02.001.
Hie, B., B. Bryson, and B. Berger. 2019. “Efficient Integration of Heterogeneous Single-Cell Transcriptomes Using Scanorama.” Journal Article. Nat Biotechnol 37 (6): 685–91. https://doi.org/10.1038/s41587-019-0113-3.
Hou, W., Z. Ji, H. Ji, and S. C. Hicks. 2020. “A Systematic Evaluation of Single-Cell RNA-Sequencing Imputation Methods.” Journal Article. Genome Biol 21 (1): 218. https://doi.org/10.1186/s13059-020-02132-x.
Hrvatin, S., D. R. Hochbaum, M. A. Nagy, M. Cicconet, K. Robertson, L. Cheadle, R. Zilionis, et al. 2018. “Single-Cell Analysis of Experience-Dependent Transcriptomic States in the Mouse Visual Cortex.” Journal Article. Nat Neurosci 21 (1): 120–29. https://doi.org/10.1038/s41593-017-0029-5.
Huang, M., J. Wang, E. Torre, H. Dueck, S. Shaffer, R. Bonasio, J. I. Murray, A. Raj, M. Li, and N. R. Zhang. 2018. “SAVER: Gene Expression Recovery for Single-Cell RNA Sequencing.” Journal Article. Nat Methods 15 (7): 539–42. https://doi.org/10.1038/s41592-018-0033-z.
Hubert, L., and P. Arabie. 1985. “Comparing Partitions.” Journal Article. Journal of Classification 2: 193–218.
Huynh-Thu, V. A., A. Irrthum, L. Wehenkel, and P. Geurts. 2010. “Inferring Regulatory Networks from Expression Data Using Tree-Based Methods.” Journal Article. PLoS One 5 (9). https://doi.org/10.1371/journal.pone.0012776.
Jang E., Gu S., and Poole B. 2016. “Categorical Reparameterization with Gumbel-Softmax.” Journal Article. arXiv.
Joost, S., A. Zeisel, T. Jacob, X. Sun, G. La Manno, P. Lonnerberg, S. Linnarsson, and M. Kasper. 2016. “Single-Cell Transcriptomics Reveals That Differentiation and Spatial Signatures Shape Epidermal and Hair Follicle Heterogeneity.” Journal Article. Cell Syst 3 (3): 221–237 e9. https://doi.org/10.1016/j.cels.2016.08.010.
Kanehisa, M., M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima. 2017. “KEGG: New Perspectives on Genomes, Pathways, Diseases and Drugs.” Journal Article. Nucleic Acids Res 45 (D1): D353–61. https://doi.org/10.1093/nar/gkw1092.
Kang, H. M., M. Subramaniam, S. Targ, M. Nguyen, L. Maliskova, E. McCarthy, E. Wan, et al. 2018. “Multiplexed Droplet Single-Cell RNA-Sequencing Using Natural Genetic Variation.” Journal Article. Nat Biotechnol 36 (1): 89–94. https://doi.org/10.1038/nbt.4042.
Kharchenko, P. V., L. Silberstein, and D. T. Scadden. 2014. “Bayesian Approach to Single-Cell Differential Expression Analysis.” Journal Article. Nat Methods 11 (7): 740–42. https://doi.org/10.1038/nmeth.2967.
Kim, J. K., A. A. Kolodziejczyk, T. Ilicic, S. A. Teichmann, and J. C. Marioni. 2015. “Characterizing Noise Structure in Single-Cell RNA-Seq Distinguishes Genuine from Technical Stochastic Allelic Expression.” Journal Article. Nat Commun 6: 8687. https://doi.org/10.1038/ncomms9687.
Kinker, G. S., A. C. Greenwald, R. Tal, Z. Orlova, M. S. Cuoco, J. M. McFarland, A. Warren, et al. 2020. “Pan-Cancer Single-Cell RNA-Seq Identifies Recurring Programs of Cellular Heterogeneity.” Journal Article. Nat Genet 52 (11): 1208–18. https://doi.org/10.1038/s41588-020-00726-6.
Klein, A. M., L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, L. Peshkin, D. A. Weitz, and M. W. Kirschner. 2015. “Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells.” Journal Article. Cell 161 (5): 1187–1201. https://doi.org/10.1016/j.cell.2015.04.044.
Korsunsky, I., N. Millard, J. Fan, K. Slowikowski, F. Zhang, K. Wei, Y. Baglaenko, M. Brenner, P. R. Loh, and S. Raychaudhuri. 2019. “Fast, Sensitive and Accurate Integration of Single-Cell Data with Harmony.” Journal Article. Nat Methods 16 (12): 1289–96. https://doi.org/10.1038/s41592-019-0619-0.
Krishnaswamy, S., M. H. Spitzer, M. Mingueneau, S. C. Bendall, O. Litvin, E. Stone, D. Pe’er, and G. P. Nolan. 2014. “Systems Biology. Conditional Density-Based Analysis of t Cell Signaling in Single-Cell Data.” Journal Article. Science 346 (6213): 1250689. https://doi.org/10.1126/science.1250689.
La Manno, G., D. Gyllborg, S. Codeluppi, K. Nishimura, C. Salto, A. Zeisel, L. E. Borm, et al. 2016. “Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells.” Journal Article. Cell 167 (2): 566–580 e19. https://doi.org/10.1016/j.cell.2016.09.027.
Lahnemann, D., J. Koster, E. Szczurek, D. J. McCarthy, S. C. Hicks, M. D. Robinson, C. A. Vallejos, et al. 2020. “Eleven Grand Challenges in Single-Cell Data Science.” Journal Article. Genome Biol 21 (1): 31. https://doi.org/10.1186/s13059-020-1926-6.
Levine, J. H., E. F. Simonds, S. C. Bendall, K. L. Davis, A. D. Amir el, M. D. Tadmor, O. Litvin, et al. 2015. “Data-Driven Phenotypic Dissection of AML Reveals Progenitor-Like Cells That Correlate with Prognosis.” Journal Article. Cell 162 (1): 184–97. https://doi.org/10.1016/j.cell.2015.05.047.
Li, H., E. T. Courtois, D. Sengupta, Y. Tan, K. H. Chen, J. J. L. Goh, S. L. Kong, et al. 2017. “Reference Component Analysis of Single-Cell Transcriptomes Elucidates Cellular Heterogeneity in Human Colorectal Tumors.” Journal Article. Nat Genet 49 (5): 708–18. https://doi.org/10.1038/ng.3818.
Li, W. V., and J. J. Li. 2018. “An Accurate and Robust Imputation Method scImpute for Single-Cell RNA-Seq Data.” Journal Article. Nat Commun 9 (1): 997. https://doi.org/10.1038/s41467-018-03405-7.
Li, X., K. Wang, Y. Lyu, H. Pan, J. Zhang, D. Stambolian, K. Susztak, M. P. Reilly, G. Hu, and M. Li. 2020. “Deep Learning Enables Accurate Clustering with Batch Effect Removal in Single-Cell RNA-Seq Analysis.” Journal Article. Nat Commun 11 (1): 2338. https://doi.org/10.1038/s41467-020-15851-3.
Lieberman, Y., L. Rokach, and T. Shay. 2018. “CaSTLe - Classification of Single Cells by Transfer Learning: Harnessing the Power of Publicly Available Single Cell RNA Sequencing Experiments to Annotate New Experiments.” Journal Article. PLoS One 13 (10): e0205499. https://doi.org/10.1371/journal.pone.0205499.
Lin, C., S. Jain, H. Kim, and Z. Bar-Joseph. 2017. “Using Neural Networks for Reducing the Dimensions of Single-Cell RNA-Seq Data.” Journal Article. Nucleic Acids Res 45 (17): e156. https://doi.org/10.1093/nar/gkx681.
Lin, P., M. Troup, and J. W. Ho. 2017. “CIDR: Ultrafast and Accurate Clustering Through Imputation for Single-Cell RNA-Seq Data.” Journal Article. Genome Biol 18 (1): 59. https://doi.org/10.1186/s13059-017-1188-0.
Lindenbaum, Stanley, O., and S. Krishnaswamy. 2018. “Geometry-Based Data Generation.” Journal Article. Advances in Neural Information Processing Systems.
Linderman, G. C., M. Rachh, J. G. Hoskins, S. Steinerberger, and Y. Kluger. 2019. “Fast Interpolation-Based t-SNE for Improved Visualization of Single-Cell RNA-Seq Data.” Journal Article. Nat Methods 16 (3): 243–45. https://doi.org/10.1038/s41592-018-0308-4.
Lopez, R., J. Regier, M. B. Cole, M. I. Jordan, and N. Yosef. 2018. “Deep Generative Modeling for Single-Cell Transcriptomics.” Journal Article. Nat Methods 15 (12): 1053–58. https://doi.org/10.1038/s41592-018-0229-2.
Lotfollahi, M., F. A. Wolf, and F. J. Theis. 2019. “scGen Predicts Single-Cell Perturbation Responses.” Journal Article. Nat Methods 16 (8): 715–21. https://doi.org/10.1038/s41592-019-0494-8.
Lun, A. T., K. Bach, and J. C. Marioni. 2016. “Pooling Across Cells to Normalize Single-Cell RNA Sequencing Data with Many Zero Counts.” Journal Article. Genome Biol 17: 75. https://doi.org/10.1186/s13059-016-0947-7.
Maaten, G. van der, L. & Hinton. 2008. “Visualizing Data Using t-SNE.” Journal Article. J. Mach. Learn 9: 2579–2605.
Macosko, E. Z., A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, I. Tirosh, et al. 2015. “Highly Parallel Genome-Wide Expression Profiling of Individual Cells Using Nanoliter Droplets.” Journal Article. Cell 161 (5): 1202–14. https://doi.org/10.1016/j.cell.2015.05.002.
Mannarapu, M., B. Dariya, and O. R. Bandapalli. 2021. “Application of Single-Cell Sequencing Technologies in Pancreatic Cancer.” Journal Article. Mol Cell Biochem 476 (6): 2429–37. https://doi.org/10.1007/s11010-021-04095-4.
Marouf, M., P. Machart, V. Bansal, C. Kilian, D. S. Magruder, C. F. Krebs, and S. Bonn. 2020. “Realistic in Silico Generation and Augmentation of Single-Cell RNA-Seq Data Using Generative Adversarial Networks.” Journal Article. Nat Commun 11 (1): 166. https://doi.org/10.1038/s41467-019-14018-z.
McGinnis, C. S., L. M. Murrow, and Z. J. Gartner. 2019. “DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors.” Journal Article. Cell Syst 8 (4): 329–337 e4. https://doi.org/10.1016/j.cels.2019.03.003.
McInnes, Healy, L. 2018. “Umap: Uniform Manifold Approximation and Projection for Dimension Reduction.” Journal Article. ArXiv. https://doi.org/ https://arxiv.org/
abs/1802.03426.
Miao, Z., K. Deng, X. Wang, and X. Zhang. 2018. “DEsingle for Detecting Three Types of Differential Expression in Single-Cell RNA-Seq Data.” Journal Article. Bioinformatics 34 (18): 3223–24. https://doi.org/10.1093/bioinformatics/bty332.
Miyato, T., and M Koyama. 2018. “cGANs with Projection Discriminator.” Journal Article. Preprint. https://doi.org/https://arxiv.org/abs/1802.05637.
Moon, K. R. et al. 2017. “PHATE: A Dimensionality Reduction Method for Visualizing Trajectory Structures in High-Dimensional Biological Data.” Journal Article. bioRxiv. https://doi.org/https://doi.org/10.1101/120378.
Muraro, M. J., G. Dharmadhikari, D. Grun, N. Groen, T. Dielen, E. Jansen, L. van Gurp, et al. 2016. “A Single-Cell Transcriptome Atlas of the Human Pancreas.” Journal Article. Cell Syst 3 (4): 385–394 e3. https://doi.org/10.1016/j.cels.2016.09.002.
Navin, N. E. 2015. “The First Five Years of Single-Cell Cancer Genomics and Beyond.” Journal Article. Genome Res 25 (10): 1499–1507. https://doi.org/10.1101/gr.191098.115.
Nestorowa, S., F. K. Hamey, B. Pijuan Sala, E. Diamanti, M. Shepherd, E. Laurenti, N. K. Wilson, D. G. Kent, and B. Gottgens. 2016. “A Single-Cell Resolution Map of Mouse Hematopoietic Stem and Progenitor Cell Differentiation.” Journal Article. Blood 128 (8): e20–31. https://doi.org/10.1182/blood-2016-05-716480.
Newman, M. E. 2006. “Modularity and Community Structure in Networks.” Journal Article. Proc Natl Acad Sci U S A 103 (23): 8577–82. https://doi.org/10.1073/pnas.0601602103.
Patel, A. P., I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie, H. Wakimoto, D. P. Cahill, et al. 2014. “Single-Cell RNA-Seq Highlights Intratumoral Heterogeneity in Primary Glioblastoma.” Journal Article. Science 344 (6190): 1396–1401. https://doi.org/10.1126/science.1254257.
Patel, N. D., S. K. Nguang, and G. G. Coghill. 2007. “Neural Network Implementation Using Bit Streams.” Journal Article. IEEE Trans Neural Netw 18 (5): 1488–1504. https://doi.org/10.1109/tnn.2007.895822.
Paul, F., Y. Arkin, A. Giladi, D. A. Jaitin, E. Kenigsberg, H. Keren-Shaul, D. Winter, et al. 2015. “Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors.” Journal Article. Cell 163 (7): 1663–77. https://doi.org/10.1016/j.cell.2015.11.013.
Peng, T., Q. Zhu, P. Yin, and K. Tan. 2019. “SCRABBLE: Single-Cell RNA-Seq Imputation Constrained by Bulk RNA-Seq Data.” Journal Article. Genome Biol 20 (1): 88. https://doi.org/10.1186/s13059-019-1681-8.
Peng, Y., E. Baulier, Y. Ke, A. Young, N. B. Ahmedli, S. D. Schwartz, and D. B. Farber. 2018. “Human Embryonic Stem Cells Extracellular Vesicles and Their Effects on Immortalized Human Retinal Muller Cells.” Journal Article. PLoS One 13 (3): e0194004. https://doi.org/10.1371/journal.pone.0194004.
Petegrosso, R., Z. Li, and R. Kuang. 2020. “Machine Learning and Statistical Methods for Clustering Single-Cell RNA-Sequencing Data.” Journal Article. Brief Bioinform 21 (4): 1209–23. https://doi.org/10.1093/bib/bbz063.
Picelli, S., A. K. Bjorklund, O. R. Faridani, S. Sagasser, G. Winberg, and R. Sandberg. 2013. “Smart-Seq2 for Sensitive Full-Length Transcriptome Profiling in Single Cells.” Journal Article. Nat Methods 10 (11): 1096–98. https://doi.org/10.1038/nmeth.2639.
Pijuan-Sala, B., J. A. Griffiths, C. Guibentif, T. W. Hiscock, W. Jawaid, F. J. Calero-Nieto, C. Mulas, et al. 2019. “A Single-Cell Molecular Map of Mouse Gastrulation and Early Organogenesis.” Journal Article. Nature 566 (7745): 490–95. https://doi.org/10.1038/s41586-019-0933-9.
Polanski, K., M. D. Young, Z. Miao, K. B. Meyer, S. A. Teichmann, and J. E. Park. 2020. “BBKNN: Fast Batch Alignment of Single Cell Transcriptomes.” Journal Article. Bioinformatics 36 (3): 964–65. https://doi.org/10.1093/bioinformatics/btz625.
Qiu, X., Q. Mao, Y. Tang, L. Wang, R. Chawla, H. A. Pliner, and C. Trapnell. 2017. “Reversed Graph Embedding Resolves Complex Single-Cell Trajectories.” Journal Article. Nat Methods 14 (10): 979–82. https://doi.org/10.1038/nmeth.4402.
Racle, J., K. de Jonge, P. Baumgaertner, D. E. Speiser, and D. Gfeller. 2017. “Simultaneous Enumeration of Cancer and Immune Cell Types from Bulk Tumor Gene Expression Data.” Journal Article. Elife 6. https://doi.org/10.7554/eLife.26476.
Rashid, S., S. Shah, Z. Bar-Joseph, and R. Pandya. 2019. “Dhaka: Variational Autoencoder for Unmasking Tumor Heterogeneity from Single Cell Genomic Data.” Journal Article. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz095.
Regev, A., S. A. Teichmann, E. S. Lander, I. Amit, C. Benoist, E. Birney, B. Bodenmiller, et al. 2017. “The Human Cell Atlas.” Journal Article. Elife 6. https://doi.org/10.7554/eLife.27041.
Rosenberg, A., and J. Hirschberg. 2007. “Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL).” Journal Article, 410–20.
Rousseeuw, P. J. 1987. “Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster Analysis.” Journal Article. Journal of Computational and Applied Mathematics 20: 583–617.
Roweis, S. T., and L. K. Saul. 2000. “Nonlinear Dimensionality Reduction by Locally Linear Embedding.” Journal Article. Science 290 (5500): 2323–26. https://doi.org/10.1126/science.290.5500.2323.
Setty, M., M. D. Tadmor, S. Reich-Zeliger, O. Angel, T. M. Salame, P. Kathail, K. Choi, S. Bendall, N. Friedman, and D. Pe’er. 2016. “Wishbone Identifies Bifurcating Developmental Trajectories from Single-Cell Data.” Journal Article. Nat Biotechnol 34 (6): 637–45. https://doi.org/10.1038/nbt.3569.
Shekhar, K., S. W. Lapan, I. E. Whitney, N. M. Tran, E. Z. Macosko, M. Kowalczyk, X. Adiconis, et al. 2016. “Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell Transcriptomics.” Journal Article. Cell 166 (5): 1308–1323 e30. https://doi.org/10.1016/j.cell.2016.07.054.
Srinivasan, S., A. Leshchyk, N. T. Johnson, and D. Korkin. 2020. “A Hybrid Deep Clustering Approach for Robust Cell Type Profiling Using Single-Cell RNA-Seq Data.” Journal Article. RNA 26 (10): 1303–19. https://doi.org/10.1261/rna.074427.119.
Stoeckius, M., C. Hafemeister, W. Stephenson, B. Houck-Loomis, P. K. Chattopadhyay, H. Swerdlow, R. Satija, and P. Smibert. 2017. “Simultaneous Epitope and Transcriptome Measurement in Single Cells.” Journal Article. Nat Methods 14 (9): 865–68. https://doi.org/10.1038/nmeth.4380.
Strehland, A., and J. Ghosh. 2002. “Cluster Ensembles—a Knowledge Reuse Framework for Combining Multiple Partitions.” Journal Article. J Mach Learn Res 3: 583–617.
Stuart, T., A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, 3rd Mauck W. M., Y. Hao, M. Stoeckius, P. Smibert, and R. Satija. 2019. “Comprehensive Integration of Single-Cell Data.” Journal Article. Cell 177 (7): 1888–1902 e21. https://doi.org/10.1016/j.cell.2019.05.031.
Subelj, L., and M. Bajec. 2011. “Unfolding Communities in Large Complex Networks: Combining Defensive and Offensive Label Propagation for Core Extraction.” Journal Article. Phys Rev E Stat Nonlin Soft Matter Phys 83 (3 Pt 2): 036103. https://doi.org/10.1103/PhysRevE.83.036103.
Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, et al. 2005. “Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles.” Journal Article. Proc Natl Acad Sci U S A 102 (43): 15545–50. https://doi.org/10.1073/pnas.0506580102.
Sun, Zhu, S., and X. Zhou. 2019. “Accuracy, Robustness and Scalability of Dimensionality Reduction Methods for Single-Cell RNA-Seq Analysis.” Journal Article. Genome Biol 20 (1): 269. https://doi.org/10.1186/s13059-019-1898-6.
Svensson, V., A. Gayoso, N. Yosef, and L. Pachter. 2020. “Interpretable Factor Models of Single-Cell RNA-Seq via Variational Autoencoders.” Journal Article. Bioinformatics 36 (11): 3418–21. https://doi.org/10.1093/bioinformatics/btaa169.
Tian, Wan, T. 2019. “Clustering Single-Cell RNA-Seq Data with a Model-Based Deep Learning Approach.” Journal Article. Nat Mach Intell 1. https://doi.org/ https://doi.org/10.1038/s42256-019-0037-0.
Tirosh, I., B. Izar, S. M. Prakadan, 2nd Wadsworth M. H., D. Treacy, J. J. Trombetta, A. Rotem, et al. 2016. “Dissecting the Multicellular Ecosystem of Metastatic Melanoma by Single-Cell RNA-Seq.” Journal Article. Science 352 (6282): 189–96. https://doi.org/10.1126/science.aad0501.
Tirosh, I., A. S. Venteicher, C. Hebert, L. E. Escalante, A. P. Patel, K. Yizhak, J. M. Fisher, et al. 2016. “Single-Cell RNA-Seq Supports a Developmental Hierarchy in Human Oligodendroglioma.” Journal Article. Nature 539 (7628): 309–13. https://doi.org/10.1038/nature20123.
Torroja, C., and F. Sanchez-Cabo. 2019. “Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data.” Journal Article. Front Genet 10: 978. https://doi.org/10.3389/fgene.2019.00978.
Traag, V. A., L. Waltman, and N. J. van Eck. 2019. “From Louvain to Leiden: Guaranteeing Well-Connected Communities.” Journal Article. Sci Rep 9 (1): 5233. https://doi.org/10.1038/s41598-019-41695-z.
Tran, H. T. N., K. S. Ang, M. Chevrier, X. Zhang, N. Y. S. Lee, M. Goh, and J. Chen. 2020. “A Benchmark of Batch-Effect Correction Methods for Single-Cell RNA Sequencing Data.” Journal Article. Genome Biol 21 (1): 12. https://doi.org/10.1186/s13059-019-1850-9.
Tusi, B. K., S. L. Wolock, C. Weinreb, Y. Hwang, D. Hidalgo, R. Zilionis, A. Waisman, J. R. Huh, A. M. Klein, and M. Socolovsky. 2018. “Population Snapshots Predict Early Haematopoietic and Erythroid Hierarchies.” Journal Article. Nature 555 (7694): 54–60. https://doi.org/10.1038/nature25741.
Usoskin, D., A. Furlan, S. Islam, H. Abdo, P. Lonnerberg, D. Lou, J. Hjerling-Leffler, et al. 2015. “Unbiased Classification of Sensory Neuron Types by Large-Scale Single-Cell RNA Sequencing.” Journal Article. Nat Neurosci 18 (1): 145–53. https://doi.org/10.1038/nn.3881.
Vallejos, C. A., J. C. Marioni, and S. Richardson. 2015. “BASiCS: Bayesian Analysis of Single-Cell Sequencing Data.” Journal Article. PLoS Comput Biol 11 (6): e1004333. https://doi.org/10.1371/journal.pcbi.1004333.
Vitak, S. A., K. A. Torkenczy, J. L. Rosenkrantz, A. J. Fields, L. Christiansen, M. H. Wong, L. Carbone, F. J. Steemers, and A. Adey. 2017. “Sequencing Thousands of Single-Cell Genomes with Combinatorial Indexing.” Journal Article. Nat Methods 14 (3): 302–8. https://doi.org/10.1038/nmeth.4154.
Wang, B., J. Zhu, E. Pierson, D. Ramazzotti, and S. Batzoglou. 2017. “Visualization and Analysis of Single-Cell RNA-Seq Data by Kernel-Based Similarity Learning.” Journal Article. Nat Methods 14 (4): 414–16. https://doi.org/10.1038/nmeth.4207.
Wang, D., and J. Gu. 2018. “VASC: Dimension Reduction and Visualization of Single-Cell RNA-Seq Data by Deep Variational Autoencoder.” Journal Article. Genomics Proteomics Bioinformatics 16 (5): 320–31. https://doi.org/10.1016/j.gpb.2018.08.003.
Wang, D., S. Hou, L. Zhang, X. Wang, B. Liu, and Z. Zhang. 2021. “iMAP: Integration of Multiple Single-Cell Datasets by Adversarial Paired Transfer Networks.” Journal Article. Genome Biol 22 (1): 63. https://doi.org/10.1186/s13059-021-02280-8.
Wang, J., D. Agarwal, M. Huang, G. Hu, Z. Zhou, C. Ye, and N. R. Zhang. 2019. “Data Denoising with Transfer Learning in Single-Cell Transcriptomics.” Journal Article. Nat Methods 16 (9): 875–78. https://doi.org/10.1038/s41592-019-0537-1.
Wang, Nie, L. 2020. “An Interpretable Deep-Learning Architecture of Capsule Networks for Identifying Cell-Type Gene Expression Programs from Single-Cell RNA-Sequencing Data.” Journal Article. Nat Mach Intell 2: 693–703. https://doi.org/ttps://doi.org/10.1038/s42256-020-00244-4.
Wang, T., T. S. Johnson, W. Shao, Z. Lu, B. R. Helm, J. Zhang, and K. Huang. 2019. “BERMUDA: A Novel Deep Transfer Learning Method for Single-Cell RNA Sequencing Batch Correction Reveals Hidden High-Resolution Cellular Subtypes.” Journal Article. Genome Biol 20 (1): 165. https://doi.org/10.1186/s13059-019-1764-6.
Wang, Y. X., M. S. Waterman, and H. Huang. 2014. “Gene Coexpression Measures in Large Heterogeneous Samples Using Count Statistics.” Journal Article. Proc Natl Acad Sci U S A 111 (46): 16371–76. https://doi.org/10.1073/pnas.1417128111.
Wauters, E., P. Van Mol, A. D. Garg, S. Jansen, Y. Van Herck, L. Vanderbeke, A. Bassez, et al. 2021. “Discriminating Mild from Critical COVID-19 by Innate and Adaptive Immune Single-Cell Profiling of Bronchoalveolar Lavages.” Journal Article. Cell Res 31 (3): 272–90. https://doi.org/10.1038/s41422-020-00455-9.
Welch, J. D., A. J. Hartemink, and J. F. Prins. 2016. “SLICER: Inferring Branched, Nonlinear Cellular Trajectories from Single Cell RNA-Seq Data.” Journal Article. Genome Biol 17 (1): 106. https://doi.org/10.1186/s13059-016-0975-3.
Wolf, F. A., P. Angerer, and F. J. Theis. 2018. “SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis.” Journal Article. Genome Biol 19 (1): 15. https://doi.org/10.1186/s13059-017-1382-0.
Wolock, S. L., R. Lopez, and A. M. Klein. 2019. “Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data.” Journal Article. Cell Syst 8 (4): 281–291 e9. https://doi.org/10.1016/j.cels.2018.11.005.
Xie, Junyuan, Ross Girshick, and Ali Farhadi. n.d. “Unsupervised Deep Embedding for Clustering Analysis.” Conference Proceedings. In International Conference on Machine Learning, 478–87. PMLR.
Xu, C., R. Lopez, E. Mehlman, J. Regier, M. I. Jordan, and N. Yosef. 2021. “Probabilistic Harmonization and Annotation of Single-Cell Transcriptomics Data with Deep Generative Models.” Journal Article. Mol Syst Biol 17 (1): e9620. https://doi.org/10.15252/msb.20209620.
Xu, Y., Z. Zhang, L. You, J. Liu, Z. Fan, and X. Zhou. 2020. “scIGANs: Single-Cell RNA-Seq Imputation Using Generative Adversarial Networks.” Journal Article. Nucleic Acids Res 48 (15): e85. https://doi.org/10.1093/nar/gkaa506.
Yevshin, I., R. Sharipov, T. Valeev, A. Kel, and F. Kolpakov. 2017. “GTRD: A Database of Transcription Factor Binding Sites Identified by ChIP-Seq Experiments.” Journal Article. Nucleic Acids Res 45 (D1): D61–67. https://doi.org/10.1093/nar/gkw951.
Yoshihara, K., M. Shahmoradgoli, E. Martinez, R. Vegesna, H. Kim, W. Torres-Garcia, V. Trevino, et al. 2013. “Inferring Tumour Purity and Stromal and Immune Cell Admixture from Expression Data.” Journal Article. Nat Commun 4: 2612. https://doi.org/10.1038/ncomms3612.
Yu, B., C. Chen, R. Qi, R. Zheng, P. J. Skillman-Lawrence, X. Wang, A. Ma, and H. Gu. 2020. “scGMAI: A Gaussian Mixture Model for Clustering Single-Cell RNA-Seq Data Based on Deep Autoencoder.” Journal Article. Brief Bioinform. https://doi.org/10.1093/bib/bbaa316.
Yuan, Y., and Z. Bar-Joseph. 2019. “Deep Learning for Inferring Gene Relationships from Single-Cell Expression Data.” Journal Article. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1911536116.
Zahn, H., A. Steif, E. Laks, P. Eirew, M. VanInsberghe, S. P. Shah, S. Aparicio, and C. L. Hansen. 2017. “Scalable Whole-Genome Single-Cell Library Preparation Without Preamplification.” Journal Article. Nat Methods 14 (2): 167–73. https://doi.org/10.1038/nmeth.4140.
Zappia, L., B. Phipson, and A. Oshlack. 2017. “Splatter: Simulation of Single-Cell RNA Sequencing Data.” Journal Article. Genome Biol 18 (1): 174. https://doi.org/10.1186/s13059-017-1305-0.
Zeisel, A., A. B. Munoz-Manchado, S. Codeluppi, P. Lonnerberg, G. La Manno, A. Jureus, S. Marques, et al. 2015. “Brain Structure. Cell Types in the Mouse Cortex and Hippocampus Revealed by Single-Cell RNA-Seq.” Journal Article. Science 347 (6226): 1138–42. https://doi.org/10.1126/science.aaa1934.
Zheng, G. X., J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B. Ziraldo, et al. 2017. “Massively Parallel Digital Transcriptional Profiling of Single Cells.” Journal Article. Nat Commun 8: 14049. https://doi.org/10.1038/ncomms14049.